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Abstract: This paper presents an approach to analyze spatial and temporal (spatiotemporal) patterns of traffic accidents 

and to organize them according to their level of significance. This approach was tested using three years (2011-2013) of 

traffic accident data for Sherbrooke. The spatiotemporal patterns of traffic accidents were analyzed using kernel density 

estimation (KDE) for four different seasons. Two different crash measures were compared: simple crash counts and 

severity-weighted crash counts. The results show that severity-weighted crash counts reveal the effect of a single 

fatal/severe injury or light injury crash on the patterns. However, the lack of a significance test is the main drawback of the 

KDE. Therefore, this paper integrates the KDE with local Moran’s I to identify clusters of statistical significance for traffic 

accidents within each area. Thus, after the density is calculated by the KDE, it is then applied as the attribute (input value) 

for calculating local Moran’s I. Our findings show that the method was successful to detect traffic accident clusters and 

hazardous areas in Sherbrooke.  

Keywords: Geographic Information Systems (GIS), Kernel Density Estimation (KDE), Traffic Accidents,  

Spatiotemporal Analysis, Hotspot, Local Moran’s I 

 

1. Introduction 

Understanding when and where traffic accidents occur on 

a road network is one of the most significant questions faced 

by traffic engineers. According to the World Health 

Organization [1], about 1.25 million people die each year on 

the world’s roads as a result of road accidents. The annual 

social cost of road traffic accidents in Canada, in terms of 

medical treatment, loss of life, rehabilitation and property 

damage, is estimated to be ten billion dollars [2].  

 Road traffic accidents are the result of a complex 

interaction of various environmental and technical factors. 

Technical risk factors are related to traffic characteristics and 

volume, which determine risk exposure, and can be managed 

by monitoring the geometric design of roads. Environmental 

risk factors, such as weather, have a great impact on the 

collision rate throughout the year for all climates. They affect 

road safety in terms of reduced driver visibility, reduced 

pavement friction and so forth [3]. Therefore, it is crucial for 

transportation authorities to identify potential hazardous 

locations and their occurrence time in order to develop 

strategies to prevent them.  

A review of previous studies shows that spatial analysis of 

traffic accidents has been widely used for investigating 

hazardous locations [4-12]. These studies have evaluated the 

distribution of traffic accidents based on two categories: 

distance-based methods and density-based methods. The first 

group measures the spatial dependence of point events based 

on the distance of points from each other. It includes 

techniques such as the nearest neighbor distance, Getis-Ord 

Gi*, K-function and local Moran`s I [7, 13, 14, 15, 16, 17]. 

The second group, using KDE, measures the intensity of 

point events based on the density in a region. The purpose of 

KDE is to create a smooth density surface of point events 
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over space by counting the number of crashes at each 

location as a density estimate. For each point event in the 

network, a kernel density surface is defined, and the density 

value is highest at its center and decreases as it moves away 

from the center [9, 18]. This method is suitable for 

visualizing the crash data as a continuous surface [5, 19]. 

However, it has some limitations. One obvious defect of the 

method is that only spatial dimension is used as a 

conditioning variable [20].  

Unlike spatial analysis, few studies have been dedicated to the 

temporal analysis of traffic accidents [21-23]. These studies 

performed temporal analysis to examine the clustering of traffic 

accidents for different time-series, such as hourly, daily, 

monthly, and yearly. However, their results were mainly 

presented as simple line graphs or tables, which do not provide a 

visual representation of collision clusters over time. 

More recently, spatiotemporal analysis has been applied to 

investigate the spatial and temporal patterns of traffic accidents 

[23-25]. Brunsdon [20] introduced a spatiotemporal method 

known as comap. In this method, a time period is divided into 

time-series with similar intervals, and their patterns can then be 

analyzed and presented using a spatial pattern method like the 

KDE. This method has been successfully used in other studies, 

such as for fire incidents and crime mapping. For instance, 

Asgary et al. [26] applied the comap method to show how the 

spatial pattern of fire incidents in Toronto varied over time. Plug 

et al. [25] used this method to investigate the spatiotemporal 

interaction effect on single vehicle accidents. Their results 

indicate that the comap method successfully highlights particular 

locations associated with a high crash density during a particular 

period. 

However, previous studies that have used spatiotemporal 

methods neglected some important issues in their crash data 

analysis. Firstly, these studies made no distinction between 

season-related crashes and treated all types of crashes equally, 

while the traffic accident distribution fluctuates over the months 

and seasons of a year. Secondly, the studies did not consider the 

impact of seasons (different weather conditions) on different 

levels of crash severity. Weather can increase the severity of 

crashes through different factors, such as precipitation, strong 

wind, fog/haze, and freezing rain.  

In addition, the other inevitable drawback of the KDE 

method is that an investigation of the statistical significance 

of the high-density locations is missing [4, 11, 25]. 

Therefore, it is necessary to test the significance (robustness) 

of clusters more objectively [27, 28, 29, 30]. Local indicators 

of spatial association (LISA) can be used to examine the 

significance of clusters. Local Moran’s I [31] is the most 

common type of LISA, which is used to evaluate the 

statistical significance of the high-density locations for each 

season.  

In this study, traffic accidents were first divided into four 

subsets according to the season in which they occurred. 

Second, a weight was assigned to each observed crash based 

on its severity. Third, the density of traffic accidents, using 

simple crash counts (Experiment I) and based on the severity 

of accidents (Experiment II), was computed using KDE. 

Then, the KDE results (with and without severity) were used 

as the attribute for calculating local Moran’s I.  

The aim of this study was to investigate the spatial and 

temporal patterns of traffic accidents and to test the 

significance of the clusters. The remainder of the paper is 

organized as follows. Section two describes the databases and 

the main methods used in this study. Section three presents 

the results from applying the KDE and comap to identify 

season-related hazardous locations. Finally, section four 

presents the discussion and conclusions of the study. 

2. Data and Methods 

2.1. Data Used in This Study 

This study focuses on the city of Sherbrooke, located in 

the southern Quebec region of eastern-central Canada. 

Sherbrooke covers an area of approximately 353.5	km�, and 

its population in 2011 was about 154 600 (about 0.4 % of 

Canada). The study only focuses on urban areas and 

considers all types of roadways (i.e., local, collectors, and 

arterial roads) within the city boundary, excluding 

highways. For the study, two different databases were used 

from various sources. First, a roadway network base map 

was obtained from the “Ville de Sherbrooke”. The map was 

provided in a shape file format, which includes roadway 

specifications such as shape length (segment length), road 

type, and speed limits. The shape file contains 8327 

segments. Second, a three-year (2011-2013) traffic accident 

database was provided by the “Société de l'assurance 

automobile du Québec (SAAQ)”. During the study period, a 

total of 7897 collisions were recorded on Sherbrooke’s 

roadways. The accident database was provided in an Excel 

format and contains significant crash parameters such as the 

date and time of a collision, accident location, age and sex 

of drivers, etc. A description of traffic accident types is 

provided in Table 1, which distinguishes the main 

categories of crashes. These crashes were then converted 

into a shape file and mapped using ArcGIS based on their 

latitude and longitude.  

This study only considers vehicle-to-vehicle crashes in the 

safety analysis, and other types of crashes such as pedestrian 

and cycling crashes are outside the scope of this study. The 

study area and distribution of all vehicle crashes are shown in 

Figure 1. 

Table 1. Description of traffic accident types. 

Collision severity Number of accidents Percentage of total accidents 

Fatal and severe injury 43 0.5 

Light injury 1411 18.0 

Property damage only  6443 1.5 
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Figure 1. Study area with distribution of all crashes in Sherbrooke (2011-2013). 

2.2. Methods 

2.2.1. Kernel Density Estimation 

The KDE is one of the most appropriate methods to 

identify spatial patterns of traffic accidents. It calculates the 

density of events within a specific bandwidth (search radius) 

around each point in the study area to generate a smoothed 

surface. The KDE uses a kernel function to assign a weight to 

the area surrounding the point event proportional to its 

distance to the point event. In other words, the surface value 

is highest at the point location (i.e., the center) and drops 

smoothly to a value of zero at the radius of the circle 

(bandwidth). Finally, it generates a smoothed continuous 

density surface by adding up the individual kernels in the 

study area [4, 13, 18, 26, 32]. The intensity at a specific 

location is calculated by (Equation 1): 

���� 	 	∑ �
�
 � ����,���

� ��
��� 	                        (1) 

where ����	is the density measured at location 	� , �  is the 

radius of the circle (bandwidth), K ( ) is the kernel which is a 

function of the bandwidth and distance, and ���, ��� is the 

distance between points s and	��. 
In addition, there are several types of kernel functions, 

such as quadratic, uniform, Gaussian, trigonometric, etc., but 

the results of the network KDE are more dependent on the 

search bandwidth [6, 11, 18]. Therefore, it is crucial to select 

an appropriate bandwidth because it will strongly affect the 

density pattern. If the size of the bandwidth is large, then the 

estimated density will appear smooth and local details will be 

obscured. A very small bandwidth, however, will produce a 

very sharp density pattern (as local spikes) at event locations 

[33]. Accordingly, the results of both cases may lead to false 

conclusions. 

In previous studies, researchers used an iterative (trial and 

error) technique to obtain an optimal search bandwidth [4, 6, 

10, 25]. This study followed their suggestion, and a 

bandwidth of 100 m was selected for the analysis of high-

density crash locations. 

2.2.2. Comap 

Comap is an extension (geographical variant) of a 
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technique known as the co-plot [34]. It is an exploratory 

graphical approach for examining the relationships between a 

pair of variables (i.e., the location of traffic accidents) and 

their variation over time [20]. In this study, it works by 

subdividing the three-year (2011-2013) aggregated crash data 

according to the season of the year. Then the density of each 

subset is analyzed using the KDE. Finally, the results are 

presented in various maps or plots and arranged successively 

to show how the spatial distribution of traffic accidents 

changes over time [25-26]. This study explored the 

relationship between the spatial distribution of traffic 

accidents and their variation throughout the seasons of the 

year. 

The subdividing process needs to be done carefully 

because it can lead to artifacts in the results. It has been 

suggested that each class should have a similar number of 

traffic accidents, and the class boundaries should overlap 

each other [20, 25, 26].  

In this study, as shown in Table 2, the crashes were divided 

into four ordered time intervals (i.e., four seasons). During 

each time interval, some days overlap to avoid the temporal 

boundary problem. 

Table 2. Crashes classified into four sampling periods. 

Interval I II III IV 

Season 
Winter Spring Summer Fall 

From To From To From To From To 

  20-Dec 10-Apr 20-Mar 15-Jul 15-Jun 10-Oct 01-Oct 10-Jan 

 

In addition, the use of the comap method offers some 

advantages and limitations. The first advantage is that it 

represents the spatial distribution changes in traffic accidents 

over time in a single visualization. The second advantage is 

related to dividing the data into classes of interest (i.e., by 

time or by cause). One limitation encountered with the 

method is that it overlaps class boundaries in order to have a 

similar amount of data in each class [25, 35]. 

2.2.3. Local Moran’s I 

Local Moran’s I [31] is one of the most widely used LISA 

statistics. It measures the statistical correlation between 

attributes at each location in a study area and the values 

(usually the statistical mean) in the neighboring locations and 

also tests the significance of this similarity [30, 36]. 

Formally, local Moran’s I [31] can be expressed as (Equation 

2): 

�� 	 ����� �
����� �
 	∑ !�,"(#" − % )"��,"&�                   (2) 

where !�" is a measure of the spatial weight between regions 

i and j, #̅  is the mean value, and #�,"  is the value of the 

variable at locations i and j. 

In general, there are four types of correlation among 

neighboring values: high-high (H-H), low-low (L-L), high-

low (H-L), and low-high (L-H). High-high and low-low 

indicate that there is a positive autocorrelation, while high-

low and low-high show that there is a negative 

autocorrelation [33]. The high-high areas are relevant for 

hazardous location detection and show locations where high 

number of crashes is surrounding with high values [37, 38].  

An important issue is, how to determine if the measure of 

spatial autocorrelation is statistically significant. One 

approach for testing the significance of local Moran’s I is a 

permutation test following a randomization null hypothesis 

( () ). In fact, a permutation test consists of randomly 

reassigning the given attribute values under the null 

hypothesis and calculating Moran’s I value each time [27, 36, 

38]. To evaluate the significance of the observed spatial 

pattern, the observed value of Moran’s I was compared to the 

randomly simulated distribution to obtain the p-value [31]. In 

this study, the number of permutations was set to 499, which 

is applied to each observation. Three significance levels of P 

< 0.05 (95%), P < 0.01 (99%), and P < 0.001 (99.9%) were 

used to indicate significant clusters. The GeoDa software was 

used for the local spatial autocorrelation analysis. 

3. Analysis Results 

3.1. Spatiotemporal Analysis (Experiment I) 

In this section, a comap is generated to visualize the spatial 

and temporal distribution of traffic accidents. This technique 

helps to determine whether the same hazardous locations are 

subject to temporal fluctuations in traffic accidents. 

According to the temporal framework analysis, as shown in 

Figure 2, the distribution of traffic accidents in Sherbrooke 

varies over time (i.e., seasons). It is evident that crash 

patterns are different among the seasons. Crashes are more 

evenly distributed in the spring (i.e., panel 2) and tend to be 

more clustered (highlighted in orange and red) and 

widespread in the summer, fall, and winter (i.e., panels 3, 4, 

and 1 respectively). According to the spatial framework 

analysis, as shown in Figure 2, traffic accidents are more 

uniformly distributed across all four sampling periods, with 

higher intensities of crashes around the downtown area and 

along the main roads throughout the city.  

The results show that the occurrence of traffic accidents 

varies in both space and time. The degree of variation 

appears to be dependent on several significant factors. For 

instance, in winter, these variations could be due to the 

weather conditions (as one environmental risk factor), 

including snow, rain, and freezing rain in general (and 

specific extreme risks such as “black ice”, in particular). Fall 

is an unpredictable time of the year and the first snow 

sometimes appears during this period (e.g., in November or 

earlier). We believe that this is a risky period because many 

drivers are not yet accustomed to the new weather conditions. 

It also seems that the crash variations in summer are due to 

other reasons like driving faster, road construction, etc. 
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Figure 2. Univariate comap for all traffic accidents in Sherbrooke. The orange bars show the sampling periods for each series of images (i.e., panel 1 for 

winter, panel 2 for spring, panel 3 for summer, panel 4 for fall). 

In addition, the comap technique can be used for 

identifying season-related hotspots. Identifying these 

locations could help transportation authorities and planners to 

more efficiently allocate their limited budgets and traffic 

safety resources. This study defined a location as a season-

related hotspot if crashes happen frequently only during a 

certain season. Figure 3 shows these locations highlighted 

with a black circle. For instance, in winter (see panel 1), 

crashes frequently occur at the 12e Avenue-King East 

intersection, while its density is not particularly high in other 

seasons. In summer (see panel 3), the crash density is high at 

the College-Queen intersection. In the fall (see panel 4), 

some clustering occurs at Portland Boulevard, particularly 

around the Carrefour de l’Estrie shopping center. 
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Figure 3. Univariate comap representing season-related hotspot locations (highlighted with black circles). 

3.2. Influence of Various Seasons on Severity of Collisions 

(Experiment II) 

One of the objectives of the study was to demonstrate the 

relationship between season-related crashes and the severity 

of collisions. To examine this, instead of using the simple 

crash counts, a weight should be assigned to each observed 

crash (simple crash count) based on its crash severity. 

Various weighting factors have been suggested, and this 

study used the weighting factors proposed by Agent (1973) 

[39]. Hence, this study assigned weight 1 to property damage 

only (PDO) crashes, weight 3 to light injury crashes, and 

weight 9 to serious injury and fatal crashes (fatal/severe 

injury crashes). Then, the KDE must be calculated for each 

subset (i.e., season) to demonstrate the spatial distribution of 

crash severity changes over the seasons.  

Figure 4 shows the univariate comap results demonstrating 

the effects of the severity of collisions on crash patterns in 

each season. The technique was improved by integrating bar 

graphs with a comap (for each sampling period). The bar 
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graphs were applied to illustrate the effects of a single 

fatal/severe injury and light injury crash on the crash 

patterns. As shown, crashes are significantly clustered in 

summer and fall, followed by winter and spring respectively. 

As represented in Figure 4, the highest number of fatal/severe 

injury and light injury crashes (14 and 441 respectively) 

occurred during the summer. In contrast to Experiment I, 

where crashes mostly occurred in the downtown area, in 

Experiment II crashes are more dispersed throughout the city. 

In fact, crash clusters are mainly in the downtown area, main 

intersections and along the main routes such as King West, 

King East, Galt Street, and Portland Boulevard. The high 

densities at these locations are due to the fatal/severe injury 

crashes. 

 

Figure 4. Univariate comap for all crashes in Sherbrooke (based on crash severity). The orange bars show the sampling periods for each series of images. 

The bar graphs show the related number of light injury and fatal/severe injury crashes for each sampling period. 
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In addition, a statistical comparison was made between the 

density values based on simple collision counts (Experiment 

I) and the severity of collisions (Experiment II). Hence, the 

density values calculated for all the areas using the KDE is 

then used as an attribute for computing Moran’s I. To identify 

high-high (H-H) areas for different significance levels, the 

simulation model was repeated for 499 permutations. The 

number of statistically significant H-H areas for each 

experiment at different significance levels is presented in 

Table 3. The results show that the number of significant areas 

is higher at a significance level of 0.05 (p<0.05) for both 

experiments. 

Table 3. The number of significant H-H areas for two experiments at different significance levels (p-value). 

 
 Experiment I Experiment II 

Season  Fall  Spring Summer Winter Fall  Spring Summer Winter 

Simulation runs 
 

499 499 499 499 499 499 499 499 

P-value 

0.05 24  23 33  25  71  64  79  55  

0.01 17  13  24  16  24  16  27 17  

0.001 0  0  0  0  0  0  0  0  

 

As illustrated in Table 3, as expected, the number of 

significant H-H areas is relatively higher in Experiment II 

than in Experiment I due to the effects of crash severity on 

crash density patterns. Accordingly, a higher number of 

significant areas (Experiment II) is shown for the summer, 

fall, and spring when more fatal/severe injury and light injury 

crashes occurred on the road networks. The results revealed 

that the number of significant areas in Experiment I is 

relatively high in the summer and remained constant in other 

seasons. In Experiment II, the number of H-H areas is higher 

in the summer and fall due to a higher number of fatal/severe 

injury and light injury crashes occurring in these periods.  

The spatial distribution of H-H areas (the highlighted red 

areas) for a significance level of 0.05 for both experiments is 

shown in Figure 5. Note that the red areas indicate spatial 

clusters. The overall patterns (both experiments) depict 

clusters of high traffic accidents (H-H) in the downtown area 

and along the main roadways.  

 

Figure 5. Bivariate comap to compare the density values of simple collision counts (Experiment I) and traffic accidents based on the severity of collisions 

(Experiment II). 
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4. Discussion 

Traffic accidents are one of the leading causes of death 

worldwide, hence identification of spatiotemporal distribution 

patterns of traffic accidents and their hotspots/hazardous can 

help to determine where and when intervention actions should 

be taken. In comparison with traditional methods for 

identifying hotspot traffic accident patterns, spatiotemporal 

analysis can provide a valuable root cause analysis of crash 

events [26]. This study used spatiotemporal analysis to 

evaluate and visualize changes in crash density patterns over 

time (seasons). It also investigated how taking the severity of 

traffic accidents into consideration can affect the distribution 

of traffic accident patterns.  

The results show that crash patterns vary according to the 

specific season. This allows transportation planners to focus 

on specific areas and at a specific time of year. For instance, 

the number of traffic accident clusters is relatively high in the 

summer and fall respectively. During these periods, traffic 

accidents frequently occurred in the downtown area and 

along the main roadways. Also, the results indicate that the 

approach is useful for identifying season-related hotspot 

locations. Finding these locations can help transportation 

authorities and planners to more efficiently allocate their 

limited budgets and traffic safety resources. In addition, the 

effect of taking the crash severity into consideration was 

examined by comparing the comap results from simple crash 

counts (Experiment I) with the results using weights based on 

severity (Experiment II). The comparison showed that 

Experiment II very clearly revealed the effect of a single fatal 

or injury crash on the pattern. 

The KDE method has been widely used for detecting 

collision hotspots, although an investigation of the statistical 

significance of high-density locations is missing. Therefore, 

it was integrated with local Moran’s I (local spatial statistics 

approach) to detect hotspot locations and to determine which 

of them are significant. In particular, the density values 

computed by KDE were used as an attribute in Moran’s I to 

evaluate the significant locations with high-density values. 

To identify high-high (H-H) areas, two experiments were 

tested for different significance levels. The results show that 

Experiment II leads to higher statistically significant H-H 

areas and clusters.  

5. Conclusion 

This study proposed an integrated method to evaluate and 

analysis the occurrence of traffic accidents through a GIS-based 

spatial and temporal techniques. The purpose of this research is 

to investigate the relationship between time (i.e., season) and the 

location of traffic accidents. The proposed approach is suitable 

for identifying the cluster pattern of traffic accidents, but some 

areas still need to be improved. First, in this study, the spatial 

characteristics of traffic accidents and the severity of accidents 

were analyzed, whereas there are many other factors associated 

with traffic accidents. Hence, further study is needed to consider 

other safety parameters, including road type, traffic volume, 

household income, etc. Second, this study used an iterative (trial 

and error) technique to find the most appropriate bandwidth size 

in the KDE analysis. Therefore, the development of a scientific 

method for selecting the most appropriate bandwidth size should 

be considered in future research.  
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